Construct Binary Tree from Inorder and Preorder Traversal
Problem
Given preorder and inorder traversal of a tree, construct the binary tree.
Notice
You may assume that duplicates do not exist in the tree.
Example
Given in-order [1,2,3] and pre-order [2,1,3], return a tree: Note
许久未更。做了几道二分法的题目练手,发现这道题已经淡忘了,记录一下。
这道题目的要点在于找inorder的区间。preStart每增加一次,就对应一个新的子树。每个子树的根节点都可以在inorder的中间某处找到,以此为界,左边是这个根节点的左子树,右边是右子树。不断递归,得解。
边界条件需要注意:
若preorder或inorder数组为空,返回空;
当preStart前进到超出preorder末位,或inStart超过inEnd,返回空;
每次创建完根节点之后,要将preStart加1,才能进行递归。
Solution- public class Solution {
- int preStart = 0;
- public TreeNode buildTree(int[] preorder, int[] inorder) {
- if (preorder.length == 0 || inorder.length == 0) return null;
- return helper(preorder, inorder, 0, preorder.length-1);
- }
- public TreeNode helper(int[] preorder, int[] inorder, int inStart, int inEnd) {
- if (preStart >= preorder.length || inStart > inEnd) return null;
- int index = 0;
- for (int i = inStart; i <= inEnd; i++) {
- if (inorder[i] == preorder[preStart]) {
- index = i;
- break;
- }
- }
- TreeNode root = new TreeNode(preorder[preStart++]);
- root.left = helper(preorder, inorder, inStart, index-1);
- root.right = helper(preorder, inorder, index+1, inEnd);
- return root;
- }
- }
复制代码 Construct Binary Tree from Inorder and Postorder Traversal
Problem
Given inorder and postorder traversal of a tree, construct the binary tree.
Notice
You may assume that duplicates do not exist in the tree.
Example
Given inorder [1,2,3] and postorder [1,3,2], return a tree: Note
和先序+中序方法一样,不过这次是逆推,递归的时候先右子树,后左子树即可。
Solution
Recursion- public class Solution {
- int postEnd;
- public TreeNode buildTree(int[] inorder, int[] postorder) {
- postEnd = postorder.length - 1;
- return helper(postorder, inorder, 0, inorder.length - 1);
- }
-
- private TreeNode helper(int[] postorder, int[] inorder, int inStart, int inEnd) {
- if (postEnd < 0 || inStart > inEnd) return null;
- TreeNode root = new TreeNode(postorder[postEnd--]);
-
- int inMid = 0;
- for (int i = inStart; i <= inEnd; i++) {
- if (inorder[i] == root.val) {
- inMid = i;
- break;
- }
- }
- root.right = helper(postorder, inorder, inMid +1, inEnd);
- root.left = helper(postorder, inorder, inStart, inMid-1);
- return root;
- }
- }
复制代码 Using Stack- public class Solution {
- public TreeNode buildTree(int[] inorder, int[] postorder) {
- if (inorder == null || inorder.length < 1) return null;
- int i = inorder.length - 1;
- int p = i;
- TreeNode node;
- TreeNode root = new TreeNode(postorder[postorder.length - 1]);
- Stack<TreeNode> stack = new Stack<>();
- stack.push(root);
- p--;
- while (true) {
- if (inorder[i] == stack.peek().val) { // inorder[i] is on top of stack, pop stack to get its parent to get to left side
- if (--i < 0) break;
- node = stack.pop();
- if (!stack.isEmpty() && inorder[i] == stack.peek().val) continue;
- node.left = new TreeNode(postorder[p]);
- stack.push(node.left);
- } else { // inorder[i] is not on top of stack, postorder[p] must be right child
- node = new TreeNode(postorder[p]);
- stack.peek().right = node;
- stack.push(node);
- }
- p--;
- }
- return root;
- }
- }
复制代码 |