原文出处: 蒋小强
如何合理地估算线程池大小?
这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:
如何设计线程池大小,使得可以在1s内处理完20个Transaction?
计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。
很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。
再来第二种简单的但不知是否可行的方法(N为CPU总核数):
如果是CPU密集型应用,则线程池大小设置为N+1
如果是IO密集型应用,则线程池大小设置为2N+1
如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
接下来在这个文档:服务器性能IO优化 中发现一个估算公式: - 最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
复制代码比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为: - 最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
复制代码可以得出一个结论:
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
上一种估算方法也和这个结论相合。
一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:
尽量提高短板操作的并行化比率,比如多线程下载技术
增强短板能力,比如用NIO替代IO
第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式: 加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N: - Speedup <= 1 / (F + (1-F)/N)
复制代码当N足够大时,串行化比率F越小,加速比Speedup越大。
写到这里,我突然冒出一个问题。
是否使用线程池就一定比使用单线程高效呢?
答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:
多线程带来线程上下文切换开销,单线程就没有这种开销
锁
当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。
所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类: - package pool_size_calculate;
- import java.math.BigDecimal;
- import java.math.RoundingMode;
- import java.util.Timer;
- import java.util.TimerTask;
- import java.util.concurrent.BlockingQueue;
- /**
- * A class that calculates the optimal thread pool boundaries. It takes the
- * desired target utilization and the desired work queue memory consumption as
- * input and retuns thread count and work queue capacity.
- *
- * @author Niklas Schlimm
- *
- */
- public abstract class PoolSizeCalculator {
- /**
- * The sample queue size to calculate the size of a single {[url=home.php?mod=space&uid=17823]@LINK[/url] Runnable}
- * element.
- */
- private final int SAMPLE_QUEUE_SIZE = 1000;
- /**
- * Accuracy of test run. It must finish within 20ms of the testTime
- * otherwise we retry the test. This could be configurable.
- */
- private final int EPSYLON = 20;
- /**
- * Control variable for the CPU time investigation.
- */
- private volatile boolean expired;
- /**
- * Time (millis) of the test run in the CPU time calculation.
- */
- private final long testtime = 3000;
- /**
- * Calculates the boundaries of a thread pool for a given {@link Runnable}.
- *
- * @param targetUtilization
- * the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) {
- throw new IllegalStateException("Test not accurate");
- }
- expired = false;
- start = System.currentTimeMillis();
- Timer timer = new Timer();
- timer.schedule(new TimerTask() {
- public void run() {
- expired = true;
- }
- }, testtime);
- while (!expired) {
- task.run();
- }
- start = System.currentTimeMillis() - start;
- timer.cancel();
- } while (Math.abs(start - testtime) > EPSYLON);
- collectGarbage(3);
- }
- private void collectGarbage(int times) {
- for (int i = 0; i < times; i++) {
- System.gc();
- try {
- Thread.sleep(10);
- } catch (InterruptedException e) {
- Thread.currentThread().interrupt();
- break;
- }
- }
- }
- /**
- * Calculates the memory usage of a single element in a work queue. Based on
- * Heinz Kabbutz' ideas
- * (http://www.javaspecialists.eu/archive/Issue029.html).
- *
- * @return memory usage of a single {@link Runnable} element in the thread
- * pools work queue
- */
- public long calculateMemoryUsage() {
- BlockingQueue queue = createWorkQueue();
- for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
- queue.add(creatTask());
- }
- long mem0 = Runtime.getRuntime().totalMemory()
- - Runtime.getRuntime().freeMemory();
- long mem1 = Runtime.getRuntime().totalMemory()
- - Runtime.getRuntime().freeMemory();
- queue = null;
- collectGarbage(15);
- mem0 = Runtime.getRuntime().totalMemory()
- - Runtime.getRuntime().freeMemory();
- queue = createWorkQueue();
- for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
- queue.add(creatTask());
- }
- collectGarbage(15);
- mem1 = Runtime.getRuntime().totalMemory()
- - Runtime.getRuntime().freeMemory();
- return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
- }
- /**
- * Create your runnable task here.
- *
- * @return an instance of your runnable task under investigation
- */
- protected abstract Runnable creatTask();
- /**
- * Return an instance of the queue used in the thread pool.
- *
- * @return queue instance
- */
- protected abstract BlockingQueue createWorkQueue();
- /**
- * Calculate current cpu time. Various frameworks may be used here,
- * depending on the operating system in use. (e.g.
- * http://www.hyperic.com/products/sigar). The more accurate the CPU time
- * measurement, the more accurate the results for thread count boundaries.
- *
- * @return current cpu time of current thread
- */
- protected abstract long getCurrentThreadCPUTime();
- }
复制代码然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节: - package pool_size_calculate;
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStreamReader;
- import java.lang.management.ManagementFactory;
- import java.math.BigDecimal;
- import java.net.HttpURLConnection;
- import java.net.URL;
- import java.util.concurrent.BlockingQueue;
- import java.util.concurrent.LinkedBlockingQueue;
- public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
- @Override
- protected Runnable creatTask() {
- return new AsyncIOTask();
- }
- @Override
- protected BlockingQueue createWorkQueue() {
- return new LinkedBlockingQueue(1000);
- }
- @Override
- protected long getCurrentThreadCPUTime() {
- return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
- }
- public static void main(String[] args) {
- PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
- poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
- }
- }
- /**
- * 自定义的异步IO任务
- * @author Will
- *
- */
- class AsyncIOTask implements Runnable {
- @Override
- public void run() {
- HttpURLConnection connection = null;
- BufferedReader reader = null;
- try {
- String getURL = "http://baidu.com";
- URL getUrl = new URL(getURL);
- connection = (HttpURLConnection) getUrl.openConnection();
- connection.connect();
- reader = new BufferedReader(new InputStreamReader(
- connection.getInputStream()));
- String line;
- while ((line = reader.readLine()) != null) {
- // empty loop
- }
- }
- catch (IOException e) {
- } finally {
- if(reader != null) {
- try {
- reader.close();
- }
- catch(Exception e) {
- }
- }
- connection.disconnect();
- }
- }
- }
复制代码得到的输出如下: - Target queue memory usage (bytes): 100000
- createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
- Formula: 100000 / 40
- * Recommended queue capacity (bytes): 2500
- Number of CPU: 4
- Target utilization: 1
- Elapsed time (nanos): 3000000000
- Compute time (nanos): 47181000
- Wait time (nanos): 2952819000
- Formula: 4 * 1 * (1 + 2952819000 / 47181000)
- * Optimal thread count: 256
复制代码推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池: - ThreadPoolExecutor pool =
- new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
复制代码 |