| 接着上一篇OCR所说的,上一篇给大家介绍了tesseract 在命令行的简单用法,当然了要继承到我们的程序中,还是需要代码实现的,下面给大家分享下java实现的例子。  
 拿代码扫描上面的图片,然后输出结果。主要思想就是利用Java调用系统任务。 下面是核心代码:代码很简单,中间那部分ProcessBuilder其实就类似Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim"),大家不习惯的可以使用Runtime。 测试代码: 复制代码package com.zhy.test;import java.io.File;public class Test{	public static void main(String[] args)	{		try		{						File testDataDir = new File("testdata");			System.out.println(testDataDir.listFiles().length);			int i = 0 ; 			for(File file :testDataDir.listFiles())			{				i++ ;				String recognizeText = new OCRHelper().recognizeText(file);				System.out.print(recognizeText+"t");				if( i % 5  == 0 )				{					System.out.println();				}			}					} catch (Exception e)		{			e.printStackTrace();		}	}}
输出结果:
  
 对比第一张图片,是不是很完美~哈哈 ,当然了如果你只需要实现验证码的读写,那么上面就足够了。下面继续普及图像处理的知识。 
 
 -------------------------------------------------------------------我的分割线-------------------------------------------------------------------- 当然了,有时候图片被扭曲或者模糊的很厉害,很不容易识别,所以下面我给大家介绍一个去噪的辅助类,绝对碉堡了,先看下效果图。  
 来张特写:  
 一个类,不依赖任何jar,把图像中的干扰线消灭了,是不是很给力,然后再拿这样的图片去识别,会不会效果更好呢,嘿嘿,大家自己实验~ 代码: 复制代码package com.zhy.test;import java.awt.Color;import java.awt.image.BufferedImage;import java.io.File;import java.io.IOException;import javax.imageio.ImageIO;public class ClearImageHelper{	public static void main(String[] args) throws IOException	{				File testDataDir = new File("testdata");		final String destDir = testDataDir.getAbsolutePath()+"/tmp";		for (File file : testDataDir.listFiles())		{			cleanImage(file, destDir);		}	}	/**	 * 	 * @param sfile	 *            需要去噪的图像	 * @param destDir	 *            去噪后的图像保存地址	 * @throws IOException	 */	public static void cleanImage(File sfile, String destDir)			throws IOException	{		File destF = new File(destDir);		if (!destF.exists())		{			destF.mkdirs();		}		BufferedImage bufferedImage = ImageIO.read(sfile);		int h = bufferedImage.getHeight();		int w = bufferedImage.getWidth();		// 灰度化		int[][] gray = new int[w][h];		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				int argb = bufferedImage.getRGB(x, y);				// 图像加亮(调整亮度识别率非常高)				int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);				int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);				int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);				if (r >= 255)				{					r = 255;				}				if (g >= 255)				{					g = 255;				}				if (b >= 255)				{					b = 255;				}				gray[x][y] = (int) Math						.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)								* 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);			}		}		// 二值化		int threshold = ostu(gray, w, h);		BufferedImage binaryBufferedImage = new BufferedImage(w, h,				BufferedImage.TYPE_BYTE_BINARY);		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				if (gray[x][y] > threshold)				{					gray[x][y] |= 0x00FFFF;				} else				{					gray[x][y] &= 0xFF0000;				}				binaryBufferedImage.setRGB(x, y, gray[x][y]);			}		}		// 矩阵打印		for (int y = 0; y < h; y++)		{			for (int x = 0; x < w; x++)			{				if (isBlack(binaryBufferedImage.getRGB(x, y)))				{					System.out.print("*");				} else				{					System.out.print(" ");				}			}			System.out.println();		}		ImageIO.write(binaryBufferedImage, "jpg", new File(destDir, sfile				.getName()));	}	public static boolean isBlack(int colorInt)	{		Color color = new Color(colorInt);		if (color.getRed() + color.getGreen() + color.getBlue() <= 300)		{			return true;		}		return false;	}	public static boolean isWhite(int colorInt)	{		Color color = new Color(colorInt);		if (color.getRed() + color.getGreen() + color.getBlue() > 300)		{			return true;		}		return false;	}	public static int isBlackOrWhite(int colorInt)	{		if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)		{			return 1;		}		return 0;	}	public static int getColorBright(int colorInt)	{		Color color = new Color(colorInt);		return color.getRed() + color.getGreen() + color.getBlue();	}	public static int ostu(int[][] gray, int w, int h)	{		int[] histData = new int[w * h];		// Calculate histogram		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				int red = 0xFF & gray[x][y];				histData[red]++;			}		}		// Total number of pixels		int total = w * h;		float sum = 0;		for (int t = 0; t < 256; t++)			sum += t * histData[t];		float sumB = 0;		int wB = 0;		int wF = 0;		float varMax = 0;		int threshold = 0;		for (int t = 0; t < 256; t++)		{			wB += histData[t]; // Weight Background			if (wB == 0)				continue;			wF = total - wB; // Weight Foreground			if (wF == 0)				break;			sumB += (float) (t * histData[t]);			float mB = sumB / wB; // Mean Background			float mF = (sum - sumB) / wF; // Mean Foreground			// Calculate Between Class Variance			float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);			// Check if new maximum found			if (varBetween > varMax)			{				varMax = varBetween;				threshold = t;			}		}		return threshold;	}}
 
 好了,就到这里。如果这篇文章对你有用,赞一个吧~ 
 
 来自: http://blog.csdn.net//lmj623565791/article/details/23960391 |